top of page

Author: 

Editor(s):

Updated:

ULY CLINIC

ULY CLINIC

6 Julai 2025, 09:25:26

Hyperactive deep tendon reflexes

Hyperactive deep tendon reflexes
Hyperactive deep tendon reflexes
Hyperactive deep tendon reflexes

Hyperactive deep tendon reflexes (DTRs) refer to exaggerated muscle stretch responses elicited by tapping a tendon. This increased reflex activity often indicates upper motor neuron (UMN) lesions or neuromuscular hyperexcitability. The presence of clonus — rhythmic, involuntary contractions — further supports hyperreflexia.


Understanding the Reflex Arc

The DTR reflex arc involves:

  • Afferent (sensory) neuron → Spinal cord synapse → Efferent (motor) neuron

  • Controlled by inhibitory input from descending motor pathways (especially the corticospinal tract)


Pathophysiology of hyperreflexia

  • UMN lesions remove inhibitory modulation → reflex arc becomes overactive

  • Irritability of peripheral nerves or muscles (e.g., due to electrolyte imbalance) also enhances reflex activity


Clinical assessment

History
  • Ask about:

    • Recent trauma, stroke, or neurologic disease

    • Pregnancy, especially >20 weeks (risk of preeclampsia)

    • Nutritional status, including calcium/magnesium intake

    • Toxin exposure (e.g., strychnine, lead)

    • Seizure history or altered mental status

    • Environmental exposures (e.g., cold → hypothermia)


Physical examination
  • Test DTRs bilaterally (biceps, triceps, patellar, Achilles)

  • Assess for clonus

  • Look for associated signs:

    • Babinski's sign (UMN lesion)

    • Paresthesia, muscle cramps, tetany

    • Chvostek's and Trousseau's signs

    • Neurologic deficits: weakness, ataxia, speech/vision changes

    • Autonomic changes: blood pressure, heart rate, diaphoresis


Medical Causes


Neurological Causes

Condition

Features

Stroke

Sudden hyperreflexia on contralateral side; hemiparesis, spasticity, positive Babinski.

Spinal cord injury/lesion

Hyperreflexia below lesion (after spinal shock resolves); bowel/bladder dysfunction. Lesions above T6 → autonomic dysreflexia.

Amyotrophic lateral sclerosis (ALS)

Progressive muscle weakness, fasciculations, generalized hyperreflexia, bulbar signs.

Multiple sclerosis (MS)

UMN signs, ataxia, optic neuritis, bladder dysfunction, hyperreflexia.

Brain tumor

Gradual signs (hemiparesis, spasticity, visual field loss), hyperreflexia on side opposite lesion.

Cerebral palsy (pediatrics)

Spasticity, developmental delay, persistent primitive reflexes, hyperreflexia.


Metabolic and Electrolyte Disorders

Condition

Features

Hypocalcemia

Paresthesia, tetany, positive Chvostek’s and Trousseau’s signs, carpopedal spasm, seizures.

Hypomagnesemia

Muscle cramps, ataxia, paresthesia, seizures, prolonged QT interval.

Hyperthyroidism

Hyperreflexia with tremor, weight loss, palpitations, heat intolerance.

Hypokalemia

May show fasciculations and cramps; not commonly hyperreflexia unless combined with other imbalances.

Renal failure (secondary hypocalcemia/hypomagnesemia)

Neuromuscular excitability due to uremia or electrolyte disturbance.


Toxins and infections

Condition

Features

Tetanus

Lockjaw (trismus), risus sardonicus, muscle rigidity, generalized hyperreflexia, autonomic instability.

Strychnine poisoning

Severe muscle spasms, exaggerated reflexes, opisthotonos.

Lead poisoning (chronic)

Hyperreflexia, cognitive decline, abdominal pain, wrist drop (neuropathy).

Meningitis/encephalitis

Altered sensorium, neck stiffness, photophobia, possible hyperreflexia.


Endocrine & Obstetric Conditions

Condition

Features

Preeclampsia/eclampsia

Pregnancy >20 weeks, hypertension, edema, proteinuria, visual changes, hyperreflexia, seizures.

Thyrotoxic crisis

Agitation, fever, tremors, hyperreflexia, cardiac arrhythmias.


Special considerations


Diagnostic Workup
  • Laboratory:

    • Serum calcium, magnesium, electrolytes, thyroid function tests

    • Renal and liver function

    • Toxicology screen (if poisoning suspected)

  • Imaging:

    • MRI or CT brain/spine (tumors, stroke, MS lesions)

    • Spinal X-rays, lumbar puncture if CNS infection suspected

  • EEG: if seizures or encephalopathy suspected


Treatment Goals
  • Address underlying cause (e.g., electrolytes, neurologic injury, infection)

  • Prevent complications:

    • DVT → mobility exercises

    • Pressure sores → turning schedule, special mattress

    • Falls → monitor ambulation, support transfers

  • Symptom control:

    • Muscle relaxants (e.g., baclofen, diazepam)

    • Magnesium sulfate for eclampsia or tetany

    • Sedation if muscle spasms are severe


Nursing Care & Monitoring
  • Monitor:

    • Airway and breathing, especially in tetany or eclampsia

    • Level of consciousness, mental status

    • Vital signs: hypertension, tachycardia, bradypnea

  • Provide:

    • Low-stimulation environment to reduce excitability

    • Psychological support and education for patient and family

    • Assistance with ADLs as needed


Patient counseling

  • Educate caregivers about potential causes and signs of worsening (e.g., seizures, loss of consciousness)

  • Explain the purpose of diagnostic tests and treatments

  • Discuss safety measures, especially in cases with spasticity or altered sensation


Pediatric Pointers

  • Hyperreflexia is normal in neonates; matures by age 6

  • Cerebral palsy is the most common chronic cause

  • Reye’s syndrome (stage II = hyperreflexia; stage V = areflexia)

  • Use distraction methods during DTR testing for better reliability


Summary

Key Point

Details

Reflex Pathway

Disinhibited reflex arc due to UMN lesions or electrolyte imbalance

Common Causes

Stroke, ALS, MS, hypocalcemia, preeclampsia, tetanus

Associated Signs

Clonus, Babinski sign, paresthesia, seizures, muscle cramps

Workup

Labs (Ca²⁺, Mg²⁺, TSH), neuroimaging, LP if infection suspected

Treatment

Correct cause, prevent complications, sedatives/muscle relaxants as needed

Pediatric Note

Hyperreflexia normal in neonates; pathologic in older children


References:
  1. Kluding PM, Dunning K, O’Dell MW, Wu SS, Ginosin J, Feld J, et al. Foot drop stimulation versus ankle foot orthosis after stroke: 30-week outcomes. Stroke. 2013;44(6):1660–9.

  2. Ring H, Treger I, Gruendlinger L, Hausdorff JM. Neuroprosthesis for foot drop compared with an ankle-foot orthosis: Effects on postural control during walking. J Stroke Cerebrovasc Dis. 2009;18(1):41–7.

  3. Guyton AC, Hall JE. Textbook of Medical Physiology. 13th ed. Philadelphia: Elsevier; 2016.

  4. Aminoff MJ, Greenberg DA, Simon RP. Clinical Neurology. 10th ed. New York: McGraw-Hill Education; 2019.

  5. Longo DL, Fauci AS, Kasper DL, Hauser SL, Jameson JL, Loscalzo J. Harrison’s Principles of Internal Medicine. 20th ed. New York: McGraw-Hill Education; 2018.

  6. McCance KL, Huether SE. Pathophysiology: The Biologic Basis for Disease in Adults and Children. 8th ed. St. Louis: Elsevier; 2019.

  7. Tortora GJ, Derrickson BH. Principles of Anatomy and Physiology. 15th ed. Hoboken (NJ): Wiley; 2017.

  8. Royal College of Obstetricians and Gynaecologists (RCOG). The management of severe pre-eclampsia/eclampsia. Green-top Guideline No. 10B. London: RCOG; 2016.

  9. Centers for Disease Control and Prevention (CDC). Tetanus: Epidemiology and Prevention of Vaccine-Preventable Diseases. In: Hamborsky J, Kroger A, Wolfe S, editors. The Pink Book. 13th ed. Washington DC: Public Health Foundation; 2015.

  10. Reber KM, Sapsford M, O’Connor MJ. Neurologic disorders in children. In: Kliegman RM, St. Geme JW, Blum NJ, Shah SS, Tasker RC, Wilson KM, editors. Nelson Textbook of Pediatrics. 21st ed. Philadelphia: Elsevier; 2020.

bottom of page